
© 2021 JETIR January 2021, Volume 8, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2101318 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 822

Cloud Database Services improve Using load

balancing Technique

Abstract:

Cloud database load blanching services is an innovative application. It is a column-oriented and relational database. It also has

many options to filter or report the needed data. It has many features like flexibility, scalability, etc. It is also very user-friendly.

The problem with this is that it has a slow loading time for huge data. I will improve cloud database services data availability using

Round Robin algorithm.

Keyword: Round Robin, Load balancer, working process proposed work, Security and privacy.

Introduction:

Today there is an enormous amount of data all around

the world, making it kind of difficult for organizations

to manage and store the data. Cloud computing has

made the process a bit simple with a proper cloud

database management system. Just like Relational

Database Management System, there needs to be

proper planning and system to store chunks of

essential data, and manipulate and access the data from

all across the world whenever it is required.

The three schema architecture looks at three layers

necessary for separating the data level from the

physical level. It normally goes with the storage of the

data, forming the base or the data layer. The data gets

stored at a server with the application part forming the

second layer. The final layer is the physical layer

which can be accessed and used by the common

people. There can be modifications in the architecture

such as the 5-tier architecture or the 7 level

architecture but the 3 layer architecture forms the base

with necessary changes for the cloud services.

A more convenient model is “database as a service” or

DBaaS. With this approach, the provider shoulders far

more of the burdens, typically including provisioning,

backup, scaling, monitoring, and other management

services. Users don’t have to fiddle with infrastructure

concerns and can simply connect and use the systems

they need, again saving time, money, and frustration.

It is important to mention, however, that DBaaS

offerings still typically involve some administrative

burdens. Consumers must often choose between tiers

of performance or storage, tweak or tune scalability

parameters as needed.

Moving to the cloud can often require a change of

model and/or technology, which can also require

redesigning or tweaking data schemas for flexibility,

performance, etc. Transitioning to modern application

architectures such as cloud-native development with

micro services, using server less functions such as

AWS Lambda or Cloud flare Workers, or building

JavaScript heavy applications via Jam stack provides

an opportunity to reassess and restructure to maximize

the benefits of cloud databases.

As such, a multi-step approach is advised, working

from least to most important. Begin with your least

mission-critical applications (or services) and rebuild

those database schemas, moving those to the cloud. As

the difficulty of moving data and operations increases,

weigh the costs and benefits, engaging only with

vendors who meet your data-security standards along

the way. You might not be able to move everything to

the cloud, or at least not today, but good

1Md. Asad, 2 Dr.Madhurendra Kumar, 3Dr. Arbind Kumar Sinha, 4 Dr. Prakash Kumar
1Research Scholars, MagadhUniversity, Gaya 2 PhD Co-Guide, Project Manager, National Informatics Center

(NIC), Delhi
3 PhD Guide, Associate Professor, MagadhUniversity,Gaya (Bihar) ,4 Assistant Professor ,JRSU(Ranchi)

http://www.jetir.org/

© 2021 JETIR January 2021, Volume 8, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2101318 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 823

planning will help you maximize your benefits while

minimizing your risks.

A bit of Customization: Cloud data is used by a

variety of users with different requirements.

Therefore, cloud database services for data

management must be a bit customized catering to the

needs of all the users.

Modeling concept: Since there will be different types

of users, each user is going to have his or her view with

regards to his or her requirements.

Hiding the necessary information: This a crucial

step when it comes to the safety of the process.

Unauthorized people must not have any access to the

information stored on a cloud-based database.

1. Round Robin – The most basic load distribution

technique, and considered rather primitive by network

administrators.

In a round robin scenario the load balancer simply runs

down the list of servers, sending one connection to

each in turn, and starting at the top of the list when it

reaches the end.

The same principle as Round Robin, but the number of

connections that each machine receives over time is

proportionate to a ratio weight predefined for each

machine.

For example, the administrator can define that Server

X can handle twice the traffic of Servers Y and Z, and

thus the load balancer should send two requests to

Server X for each one request sent to Servers Y and Z.

However, given that most enterprises use servers that

are uniform in their processing power, Weighted

Round Robin essentially attempts to address a

nonexistent problem

2. Load balancer:

Cloud load balancing is the process of distributing

workloads and computing resources in a cloud

computing environment. Load balancing allows

enterprises to manage application or workload

demands by allocating resources among multiple

computers, networks or servers

Cloud load balancer is a virtual, scalable, high

availability component that improves user response

time and system stability by distributing workloads

across two or more working servers and resources to

maximize performance and avoid overload.

After verifying server availability using HTTP, TCP

or UDP checks, the Cloud Load Balancer routes

incoming network traffic to the servers that are

available for response. Your performance will

therefore remain stable even at times of peak usage, or

in the unlikely event that one of your servers fails.

Clouds Load Balancer can handle almost any number

of requests and is not restricted by the number of

servers you have, among its features are:

1. Load balancing algorithm based on Round Robin

2. Handling of SSL decryption (sometimes referred to

as SSL offloading termination)

3. Least connections and weight

4. Session persistence across HTTP/S protocols and

more

While maximum performance will be achieved by

using Cloud Servers, this is not mandatory; you can

use cloud load balancing for 3rd party servers located

outside

3. Working Process:

The load balancer uses a predetermined pattern,

known as a load balancing algorithm or method. This

ensures no one server has to handle more traffic than it

can process. Different algorithms manage the process

using different techniques. You, therefore, have

multiple options to choose from when making a

decision on what type of load balancer to use.

Cloud database services flow

http://www.jetir.org/

© 2021 JETIR January 2021, Volume 8, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2101318 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 824

3.1 How a load balancer works:

1. A client, such as an application or browser, receives a

request and tries to connect with a server.

2. A load balancer receives the request, and, based on the

preset patterns of the algorithm, it routes the request to

one of the servers in a server group (or farm).

3. The server receives the connection request and responds

to the client via the load balancer.

4. The load balancer receives the response and matches the

IP of the client with that of the selected server. It then

forwards the packet with the response.

5. Where applicable, the load balancer handles SSL offload,

which is the process of decrypting data using the Security

Socket Layer encryption protocol, so that servers don’t

have to do it.

6. The process repeats until the session is over.

4. My proposed work:

With help from java programming I am implanting reduce the load

balance time of cloud database services.

I will show a classic interaction with IP request and

response. A request creates messages and places them

into a queue, while a client reads them out and displays

them. To be realistic, I will give the queue a maximum

request and response in an ideal way.

Clients starts to send requests to Random Load Balancer

import java.util.ArrayList;

import java.util.Iterator;

import java.util.List;
import java.util.Set

public class Client {

public static void main(String[] args) {
int NUM_OF_REQUESTS = 15;

Client client = new Client();
ArrayList <String> ipPool = new ArrayList <>();

ipPool.add("192.168.0.1");

ipPool.add("192.168.0.2");

ipPool.add("192.168.0.3");
ipPool.add("192.168.0.4");
ipPool.add("192.168.0.5");

Map <String, Integer> ipPoolWeighted = new HashMap<>();

ipPoolWeighted.put("192.168.0.1", 6);

IP: 192.168.0.3 --- Request from Client: 9 --- [Thread: main]

IP: 192.168.0.2 --- Request from Client: 10 --- [Thread: main]
IP: 192.168.0.5 --- Request from Client: 8 --- [Thread: main]

IP: 192.168.0.1 --- Request from Client: 14 --- [Thread:

ForkJoinPool.commonPool-worker-9]
IP: 192.168.0.2 --- Request from Client: 13 --- [Thread:

ForkJoinPool.commonPool-worker-5]

IP: 192.168.0.1 --- Request from Client: 11 --- [Thread:
ForkJoinPool.commonPool-worker-9]

IP: 192.168.0.4 --- Request from Client: 7 --- [Thread: main]

IP: 192.168.0.2 --- Request from Client: 0 --- [Thread:
ForkJoinPool.commonPool-worker-5]

IP: 192.168.0.3 --- Request from Client: 12 --- [Thread:
ForkJoinPool.commonPool-worker-23]

IP: 192.168.0.1 --- Request from Client: 5 --- [Thread:

ForkJoinPool.commonPool-worker-13]
IP: 192.168.0.5 --- Request from Client: 3 --- [Thread:

ForkJoinPool.commonPool-worker-5]

IP: 192.168.0.3 --- Request from Client: 4 --- [Thread:
ForkJoinPool.commonPool-worker-19]

IP: 192.168.0.2 --- Request from Client: 6 --- [Thread:

ForkJoinPool.commonPool-worker-9]

ipPoolWeighted.put("192.168.0.2", 6);
ipPoolWeighted.put("192.168.0.3", 3);
client.printNextTurn("Random");

LoadBalancer random = new RandomLoadBalancer(ipPool);

client.simulateConcurrentClientRequest(random,

NUM_OF_REQUESTS);
client.printNextTurn("Round-Robin");
LoadBalancer roundRobbin = new

RoundRobinLoadBalancer(ipPool);

client.simulateConcurrentClientRequest(roundRobbin,

NUM_OF_REQUESTS);

client.printNextTurn("Weighted-Round-Robin");
LoadBalancer weightedRoundRobin = new

WeightedRoundRobinLoadBalancer(ipPoolWeighted);

client.simulateConcurrentClientRequest(weightedRoundRobin,
NUM_OF_REQUESTS);

System.out.println("Main exits");

}

private void simulateConcurrentClientRequest(LoadBalancer

loadBalancer, int numOfCalls) {

IntStream

.range(0, numOfCalls)

.parallel()

.forEach(i ->

System.out.println(

"IP: " + loadBalancer.getIp()
+ " --- Request from Client: " + i

+ " --- [Thread: " +
Thread.currentThread().getName() + "]")

);
}

private void printNextTurn(String name) {

System.out.println("---");

System.out.println("Clients starts to send requests to " + name
+ " Load Balancer");

System.out.println("---");

}

}

http://www.jetir.org/

© 2021 JETIR January 2021, Volume 8, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2101318 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 825

Round Robin: We can observe that each thread gets ordered

IPs

Clients starts to send requests to Round-Robin Load Balancer

Clients starts to send requests to Weighted-Round-Robin Load

Balancer

5. Security and privacy: The cloud administrators

must be sure of granting access to the right people.

Also, orchestration may be required at each step of the

process.

Know about the characteristics to understand more

about the working and the structure of the cloud

database services’ platforms.

The majority of the services use web consoles by

which the end-user can configure several database

instances.

Like all kinds of database services, the database

manager controls different underlying data

modifications and storage and instances with the help

of API. This service API is provided to the user for

scaling operations on the database.

The scalability feature also differs among the different

existing types, with some offering APIs and others

going for auto-scaling options.

The software stack which is used for the entire system

includes the database system, operating system(OS),

and third-party software. Generally, the service

providers are responsible for installing and updating

the system for its smooth functioning.

Cloud services must be available and must ensure to

protect the data without losing any part of it and

without any kind of unwanted changes.

Conclusion:

Cloud database services load balancing delivers

multiple benefits by optimizing resource use, data

delivery, and response time. In high-traffic

environments, load balancing is what makes user

requests go smoothly and accurately. They spare users

IP: 192.168.0.1 --- Request from Client: 2 --- [Thread:

ForkJoinPool.commonPool-worker-5]

IP: 192.168.0.4 --- Request from Client: 1 --- [Thread:

ForkJoinPool.commonPool-worker-27]

ForkJoinPool.commonPool-worker-7]
IP: 192.168.0.3 --- Request from Client: 1 --- [Thread:
ForkJoinPool.commonPool-worker-21]

IP: 192.168.0.1 --- Request from Client: 0 --- [Thread:
ForkJoinPool.commonPool-worker-27]

IP: 192.168.0.1 --- Request from Client: 8 --- [Thread:

ForkJoinPool.commonPool-worker-13]
IP: 192.168.0.1 --- Request from Client: 12 --- [Thread:

ForkJoinPool.commonPool-worker-9]

IP: 192.168.0.1 --- Request from Client: 9 --- [Thread: main]

IP: 192.168.0.2 --- Request from Client: 3 --- [Thread:
ForkJoinPool.commonPool-worker-21]

IP: 192.168.0.3 --- Request from Client: 5 --- [Thread:

ForkJoinPool.commonPool-worker-21]
IP: 192.168.0.4 --- Request from Client: 7 --- [Thread:

ForkJoinPool.commonPool-worker-21]

IP: 192.168.0.5 --- Request from Client: 10 --- [Thread:

ForkJoinPool.commonPool-worker-3]

IP: 192.168.0.1 --- Request from Client: 6 --- [Thread:

ForkJoinPool.commonPool-worker-7]
IP: 192.168.0.3 --- Request from Client: 2 --- [Thread:

ForkJoinPool.commonPool-worker-21]

IP: 192.168.0.2 --- Request from Client: 13 --- [Thread:
ForkJoinPool.commonPool-worker-5]

IP: 192.168.0.3 --- Request from Client: 1 --- [Thread:

ForkJoinPool.commonPool-worker-19]
IP: 192.168.0.5 --- Request from Client: 4 --- [Thread:

ForkJoinPool.commonPool-worker-27]

IP: 192.168.0.4 --- Request from Client: 14 --- [Thread:
ForkJoinPool.commonPool-worker-23]

IP: 192.168.0.2 --- Request from Client: 8 --- [Thread:

ForkJoinPool.commonPool-worker-9]
IP: 192.168.0.1 --- Request from Client: 12 --- [Thread:

ForkJoinPool.commonPool-worker-13]

IP: 192.168.0.5 --- Request from Client: 11 --- [Thread:

ForkJoinPool.commonPool-worker-17]

IP: 192.168.0.4 --- Request from Client: 0 --- [Thread:

ForkJoinPool.commonPool-worker-31]

IP: 192.168.0.2 --- Request from Client: 9 --- [Thread: main]
IP: 192.168.0.2 --- Request from Client: 10 --- [Thread:

ForkJoinPool.commonPool-worker-27]

IP: 192.168.0.1 --- Request from Client: 3 --- [Thread:
ForkJoinPool.commonPool-worker-7]

IP: 192.168.0.1 --- Request from Client: 6 --- [Thread:

ForkJoinPool.commonPool-worker-3]
IP: 192.168.0.2 --- Request from Client: 13 --- [Thread:

ForkJoinPool.commonPool-worker-17]

IP: 192.168.0.1 --- Request from Client: 14 --- [Thread:

ForkJoinPool.commonPool-worker-5]

IP: 192.168.0.2 --- Request from Client: 4 --- [Thread:

ForkJoinPool.commonPool-worker-31]
IP: 192.168.0.2 --- Request from Client: 11 --- [Thread:

ForkJoinPool.commonPool-worker-19]

IP: 192.168.0.2 --- Request from Client: 7 --- [Thread:
ForkJoinPool.commonPool-worker-23]

IP: 192.168.0.3 --- Request from Client: 2 --- [Thread:

ForkJoinPool.commonPool-worker-3]
IP: 192.168.0.3 --- Request from Client: 5 --- [Thread:

http://www.jetir.org/

© 2021 JETIR January 2021, Volume 8, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2101318 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 826

the frustration of wrangling with unresponsive

applications and resources.

Load balancing also plays a key role in preventing

downtime and simplifying security, reducing the

likelihood of lost productivity and lost profits for your

organization. Other benefits of load balancing include

the following:

Besides directing traffic to maximize efficiency, load

balancing delivers the flexibility to add and remove

servers as demand dictates. It also makes it possible to

perform server maintenance without causing

disruption for users since traffic gets rerouted to other

servers during maintenance.

As the use of an application or website increases, the

boost in traffic can hinder its performance if not

managed properly. With load balancing, you gain the

ability to add a physical or virtual server to

accommodate demand without causing a service

disruption. As new servers come online, the load

balancer recognizes them and seamlessly includes

them in the process. This approach is preferable to

moving a website from an overloaded server to a new

one, which often requires some amount of downtime..

7. References

[1]. Antony Rowstron and Peter Druschel, “Pastry:

Scalable, decentralized object location and routing for

largescale peer-to-peer systems”, IFIP/ACM

International Conference on Distributed

SystemsPlatforms.

[2]. Buyya R., Ranjan R., and Calheiros N., “Modeling
and Simulation of Scalable Cloud Computing

Environments and the CloudSim Toolkit: Challenges and

Cloudsim,” in Proceedings of the Conference on
Interactionand Confidence Building Measures in

Asia,Lecture Notes in Computer Science,

Istanbul,Turkey, pp. 189-196, 2010.

[3]. Hsu C. and Chen T., “Adaptive Scheduling Based on

Quality of Service in HeterogeneousEnvironments,” in
Proceedings of the IEEEInternational Conference on

Multimedia and Ubiquitous Engineering, California,

USA, pp. 1-6, 2010.

[4]. Ijaz S., Munir E., Anwar W., and Nasir W.,“Efficient

Scheduling Strategy for Task Graphs in Heterogeneous

 Computing Environment,”

theInternational Arab Journal of Information

Technology, vol 10, no. 5, pp. 486-492, 2013.

[5].Kessaci Y., Melab N., and Talbi E., “A Pareto- Based

GA for Scheduling HPC Applications on Distributed

Cloud Infrastructures,” in Proceedings of the IEEE

International Conference on High Performance

Computing andSimulation, Istanbul, Turkey, pp. 456-

462, 2011.

[6] M. Velicanu. Baze de date prinexemple, Ed.

ASE, Bucharest, 2007.

[7] M. Velicanu. Dicţionarexplicativ al sistemelor

de baze de date, Ed. Economică, Bucharest, 2005.

[8] M. D. Solomon, "Ensuring a Successful Data Warehouse

Initiative ," Information Systems Management; 2005, pp. 26,.

[9] J. M. Hickand and J. L. Hainaut Database application

evolution: A transformational approach, 2005

[10]. Hsu C. and Chen T., “Adaptive Scheduling Based on Quality

of Service in HeterogeneousEnvironments,” in Proceedings of the

IEEEInternational Conference on Multimedia and Ubiquitous

Engineering, California, USA, pp. 1-6, 2010.

[11]. Ijaz S., Munir E., Anwar W., and Nasir W.,“Efficient

Scheduling Strategy for Task Graphs in Heterogeneous

 Computing Environment,”

theInternational Arab Journal of Information Technology, vol 10,

no. 5, pp. 486-492, 2013.

[12].Dr.Madhurendra Kumar,“Cloud computing Network Problem

and Storage solutions Using Ant colony optimization”

International Journal of Scientific & Engineering Research Volume

7, Issue 12, December-2016, ISSN 2229-5518

[13] Shelly Rohilla, Pradeep Kumar Mittal, Database Security:

Threats and Challenges, International Journal of Advanced Research

in Computer Science and Software Engineering, Volume 3, Issue 5,

May 2013.

[14] Deepika, Nitasha Soni, Database Security: Threats and Security

Techniques, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 5, Issue 5,

May 2015.

[15] Debasish Das, Utpal Sharma & D.K. Bhattacharyya, An

Approach to Detection of SQL Injection Attack Based on Dynamic

Query Matching, International Journal of Computer Applications,

Volume 1, 2010.

[16] Shivnandan Singh, Rakesh Kumar Rai, A Review Report on

Security Threats on Database, International Journal of Computer

Science and Information Technologies, Vol. 5 (3) , 2014.

[17] Debasish Das, Utpal Sharma, D.K. Bhattacharyya, An

Approach to Detection of SQL Injection Attack Based on Dynamic

Query Matching, International Journal of Computer Applications,

Volume No.1– 25,2010.

[18]. Lorpunmanee S., Sap M., Abdul A., andChompoo C., “An Ant

Colony Optimization forDynamic Job Scheduling in Grid

Environment,”in Proceedings of World Academy of Science, English

and Technology, 2007.

http://www.jetir.org/

